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ABSTRACT 

Secure sharing of AI models across organizational 

boundaries is hard: providers want to protect intellectual 

property (model weights, architectures, and training data 

provenance), while consumers want cryptographic 

assurance that an advertised model was actually used and 

that a claimed evaluation (or compliance property) is 

correct. This manuscript proposes and evaluates a 

blockchain-backed design that uses zero-knowledge proofs 

(ZKPs) to make AI model sharing verifiable, privacy-

preserving, and auditable. We synthesize the state of the art 

in ZK systems (zk-SNARKs, PLONK, Bulletproofs, zk-

STARKs, and recursive schemes) and recent advances in 

zero-knowledge machine learning (zkML). Building on 

these, we present a practical architecture: models are 

registered on-chain by committing to immutable 

fingerprints; off-chain provers generate ZK proofs of (i) 

correct inference by a committed model, (ii) basic policy 

compliance (e.g., license scope; dataset-use attestations), 

and (iii) optional training process attestations via proof-of-

learning artifacts. We report a simulation study comparing 

Groth16, PLONK, and STARK-style provers for realistic 

inference circuits and show that Groth16 yields the smallest 

proofs and fastest verification for moderate circuits, while 

PLONK offers circuit universality with similar verification 

costs and STARKs trade larger proofs for transparency and 

post-quantum assumptions. Across 300 synthetic trials, 

median verifier time remained sub-25 ms and proof sizes 

ranged from ~0.2 KB (Groth16) to ~90 KB (STARK) for 

common inference tasks, enabling economical on-chain 

verification. We discuss design choices (hashes, recursion, 

and gas budgeting), limitations (prover cost, model scale, 

privacy scope), and a roadmap toward policy-aware, 

privacy-preserving model exchanges for regulated 

industries. 
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Figure-1.Verifiable AI Model Sharing Process 
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INTRODUCTION 

AI is increasingly delivered “as a service,” but organizations 

hesitate to share or consume models without strong guarantees. 

Providers need to preserve confidential IP (weights, 

architecture), comply with licenses and regulation, and prevent 

model extraction; consumers need assurance that a claimed 

model (version v) was actually used and that reported accuracy 

or policy compliance is genuine. Traditional cryptographic 

signatures certify who produced an artifact, not what 

computation was performed with which hidden inputs. Zero-

knowledge proofs (ZKPs) fill this gap: a prover can convince a 

verifier that “this model, committed to on-chain, produced that 

output for this input,” without revealing the model’s internals 

or the user’s data, and the verification can be publicly auditable 

on a blockchain. ZKPs rigorously guarantee that the verifier 

learns nothing beyond the statement’s truth, as formalized since 

the foundational work on knowledge complexity.  

 

Figure-2.Secure AI Model Sharing 

Recent ZK systems have become practical and widely 

deployed. Pairing-based zk-SNARKs (e.g., Groth16) offer tiny 

proofs and fast verification; universal/updatable setups 

(PLONKish systems) reduced the operational burden of earlier 

systems; Bulletproofs remove trusted setup for specific 

relations; while zk-STARKs provide transparency and 

conjectured post-quantum security at the cost of larger proofs. 

These building blocks have catalyzed zero-knowledge machine 

learning (zkML): producing proofs that ML inference or even 

training was executed correctly while hiding sensitive 

parameters, data, or prompts. First full-scale demonstrations 

and surveys indicate feasibility for vision and language models, 
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albeit with significant prover overhead that current research is 

rapidly reducing.  

Blockchains complement ZKPs by providing public, append-

only provenance: they can anchor model fingerprints, license 

constraints, and proof verifications to a shared ledger. 

Historically, on-chain ZK has proven its worth in privacy-

preserving cryptocurrency systems (e.g., Zerocash), 

demonstrating real-world performance and security. This paper 

explores how to apply these ideas to secure AI model sharing: 

enabling privacy-preserving, verifiable access to AI capabilities 

across enterprise boundaries. 

LITERATURE REVIEW 

Zero-knowledge fundamentals 

Zero-knowledge proofs emerged as interactive protocols 

ensuring that proofs reveal nothing but validity. The formalism 

and definitions originate with Goldwasser, Micali, and Rackoff, 

and have been refined across decades.  

Succinct arguments (SNARKs) and efficient encodings 

SNARKs deliver non-interactive, succinct proofs using 

structured reference strings and cryptographic accumulators. 

Groth16 minimized proof size and verifier pairings for 

arithmetic circuits, enabling deployments in public 

blockchains. The QSP/QAP encodings (GGPR/Pinocchio line) 

established efficient arithmetizations for general computations. 

PLONK introduced universal/updatable setups and a powerful 

permutation argument, giving flexibility across circuits and 

ecosystems.  

Transparent systems and special-purpose protocols 

Bulletproofs provide short proofs without trusted setup, ideal 

for range proofs, though verification can be heavier than 

SNARKs. zk-STARKs replace number-theoretic assumptions 

with IOPs over FRI, yielding transparency and scalability; the 

trade-off is proof size. Recursion—proving proofs—

dramatically amplifies capabilities: Halo and Nova enable 

incrementally verifiable computation (IVC) and streaming 

proofs with reduced overhead. ZK-friendly hashes (Poseidon-

family, Rescue-Prime) reduce constraint counts in circuits that 

manipulate Merkle trees and commitments, a crucial 

optimization for zkML pipelines. 

Zero-knowledge for machine learning (zkML) 

Early works like zkCNN proved correct CNN inference without 

revealing weights; later systems scaled to ImageNet-resolution 

models and distilled transformers, and recent efforts (e.g., 

TeleSparse, ezDPS) cut prover costs via sparsity and pipeline 

optimizations. Surveys from 2023–2025 map the design space 

across verifiable inference, training, and testing. 

Complementary to zkML, proof-of-learning introduces 

verifiable attestations of training trajectories—useful when 

buyers require evidence that a model was trained under certain 

conditions without revealing data. 

Blockchain + federated/ collaborative ML 

Several architectures integrate ZKPs with federated learning 

and on-chain aggregation to make updates verifiable while 

keeping raw data private, underscoring the fit between 

verifiability and decentralized governance.  

Takeaway 

The literature establishes: (i) robust, increasingly efficient ZK 

proof systems, (ii) promising zkML prototypes and 

frameworks, and (iii) blockchain-native workflows for public 
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verifiability. These trends motivate a practical, interoperable 

architecture for secure model sharing. 

METHODOLOGY 

Threat Model and Requirements 

• R1—Model integrity & execution honesty. A 

consumer must verify that inference used the 

committed model version. 

• R2—Confidentiality. The provider’s weights and 

architecture remain hidden; the consumer’s input is 

hidden from the provider when desired. 

• R3—Provenance and policy checks. Link model 

versions to licenses, training declarations, and optional 

constraints (e.g., “not trained on dataset D”). 

• R4—Auditability and interoperability. Proofs 

verify publicly on-chain; commitments are portable 

across chains. 

• R5—Performance. Verification must be low-latency; 

proof generation should be tractable and amortizable. 

System Components 

1. On-chain registry (smart contracts) 

o Model commitment: Poseidon-based 

Merkle root of versioned artifacts (weights 

hash, architecture digest, quantization 

metadata). 

o Policy anchor: License IDs, intended use, 

and optional compliance flags (e.g., export-

control class) bound to the commitment. 

o Verifier interfaces: Groth16/PLONK/ 

STARK verifier endpoints, enabling multiple 

proof systems. 

2. Off-chain proving service 

o Circuit library: Operator set for linear 

layers, activations (R1CS/PLONKish), 

PRFs, and ZK-friendly hashes. 

o Proving backends: Groth16 (fast verify), 

PLONKish (universal setup; custom gates), 

and a STARK backend (transparent). 

o Recursion/aggregation: Use Halo/Nova-

style folding to aggregate per-layer subproofs 

into a single proof, reducing on-chain cost for 

batched queries. 

3. Client SDK (verifier) 

o Verifies proofs locally or posts them on-

chain for notarization and payment release. 

o Exposes verify-only API: 

verifyInference(modelCommit, 

inputCommit, output, π). 

4. Optional training attestations 

o Store commitments to training checkpoints 

and randomness beacons; derive proof-of-

learning artifacts that can be checked without 

leaking data. 

ZK Statements (examples) 

• Inference correctness (core):  

“Given commitments C_model and C_input, there 

exist hidden weights W and input x such that 

Commit(W)=C_model, Commit(x)=C_input, and 

f_W(x)=y.” 

• License guard (policy):  

“The requestor’s attested use case ∈ {allowed} and 

region ∉ {blocked}; the proof links to a signed license 

claim bound to C_model.” 

• Training-process claim (optional):  

“Checkpoint commits follow an SGD update rule over 
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T steps and match the final model commit,” realized 

through proof-of-learning transcripts.  

Practical Design Choices 

• Arithmetization & hashes: Use Poseidon/Rescue-

Prime for Merkle paths to minimize constraints; 

maintain Keccak only at edges. 

• Proof system selection: Groth16 for public chains 

with pairing precompiles and moderate circuits; 

PLONK for universality and evolving circuits; 

STARK for transparent setups and long-term 

assumptions.  

• Recursion & batching: Halo/Nova to fold many 

small inferences; amortize proving with preprocessing 

and reusable commitments. 

STATISTICAL ANALYSIS  

We ran a controlled simulation (Section 5) with 100 trials per 

configuration over three representative inference circuits: (A) 

compact CNN for 32×32 images, (B) 2-layer transformer block 

(seq=128), (C) logistic regression baseline. For each proof 

system we measured proof size, prover latency, verifier latency, 

and an estimated on-chain verification gas using an EVM test 

harness with standard pairing/STARK verifier precompiles. 

Summary statistics (mean ± SD): 
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Figure-3.Statistical Analysis 

Notes: (i) Results are synthetic but parameterized with 

published ranges for proof sizes and verification complexity; 

they illustrate design trade-offs rather than benchmarking any 

specific library. (ii) Gas figures assume solitary verification 

with no recursion; batched/recursive verification can reduce 

amortized cost. 
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o CNN-Small (A): 2 conv + 1 FC with ReLU-

ish constraints via lookups. 

o Transformer-Mini (B): single attention 

block (linearized softmax approximation), 2 

MLP layers with lookups. 

o Logistic baseline (C): dense d=128. 

• Arithmetization: R1CS for Groth16; PLONKish for 

PLONK with custom gates/lookups; AIR for STARK. 

• Commitment scheme: Poseidon Merkle 

commitments for models/inputs.  

• Provers & verifiers: Calibrated to commonly 

reported performance envelopes from 

Groth16/PLONK/STARK implementations and 

zkML literature (e.g., ZKML scaling studies; 

TeleSparse; zkCNN).  

• Trials: 100 per (system, circuit), random inputs; 

record sizes and latencies; compute means, SDs. 

Protocol Flow 

1. Registration: Provider submits C_model and license 

metadata to the on-chain registry; receives modelID. 

2. Request: Consumer posts C_input and a payment 

escrow to the contract. 

3. Proving: Off-chain service computes y=f_W(x) and 

generates proof π that (C_model, C_input, y) satisfy 

the inference circuit and policy predicate. 

4. Verification: Consumer verifies locally; if desired, 

submits (π, y) on-chain for notarization and escrow 

release. 

5. (Optional) Attestation: Provider includes a PoL-style 

attestation bound to C_model to satisfy due-diligence 

requirements.  

Metrics 

• Correctness acceptance rate: Fraction of valid 

inferences accepted by verifiers. 

• Latency: Prover and verifier runtimes. 

• Proof size & chain cost: Bytes over the wire; gas as 

proxy for verification cost. 

• Scalability sensitivity: Growth versus circuit size (A 

vs B vs C). 

• Privacy leakage: Qualitative check: no model 

weights or inputs leave the prover beyond 

commitments and outputs. 

Findings (qualitative) 

• Verification is fast enough for interactive APIs: 

Sub-25 ms verification across systems fits within 

typical HTTP P99 budgets; Groth16 is consistently 

fastest to verify.  

• Prover is the bottleneck: Prover time dominates end-

to-end latency; sparsity-aware techniques (e.g., 

TeleSparse) promise practical wins for modern 

networks.  

• Proof size matters for chain costs: STARK proofs 

are substantially larger, but transparency and post-

quantum assumptions may justify them for high-

assurance or long-horizon deployments.  

• Universality vs. specialization: PLONK’s universal 

setup and rich custom gates simplify maintenance 

across evolving model families with modest 

verification overhead.  

RESULTS 

R1—Model integrity & execution honesty  

The simulation demonstrates that attaching inference proofs to 

on-chain model commitments efficiently disincentivizes 

misrepresentation. Tiny Groth16 proofs (≈0.2 KB) and sub-10 
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ms verification make it practical to notarize inference events 

on-chain with low marginal cost; PLONK incurs slightly higher 

verification cost and proof size but reduces setup friction; 

STARK verifiers accept larger proofs yet bring transparent 

trust.  

R2—Confidentiality 

The ZK statement keeps both model and input private while 

certifying the computation outcome. Earlier systems like 

Zerocash validated the approach of hiding all sensitive values 

in public ledgers; our design reuses that privacy discipline for 

model sharing.  

R3—Provenance & policy checks  

Binding license terms and training claims to a model 

commitment, and then proving compliance in zero-knowledge, 

allows governance without over-disclosure. Proof-of-learning 

adds optional attestations about training processes without 

revealing datasets.  

R4—Auditability & interoperability  

Public verifiers mean any party can independently re-check a 

posted proof. Recursive constructions (Halo, Nova) make it 

feasible to aggregate many inference proofs or streaming steps 

into a single, cheaply verifiable certificate.  

R5—Performance & cost  

From Table 1, verifier costs are modest; on-chain verification 

(pairing-based) fits within a few hundred kGas per proof in our 

harness. For high-throughput settings, we recommend (i) off-

chain verification with periodic on-chain anchoring, or (ii) 

recursive aggregation into a daily or per-batch proof. 

Sensitivity to model scale  

As circuits grow (Transformer-Mini vs CNN-Small), prover 

time increases faster than verification time. Literature-aligned 

techniques—operator-level lookup tables, sparsity-aware 

representations, and sumcheck/FRI optimizations—can bring 

the prover into acceptable latency bands for production.  

CONCLUSION 

Zero-knowledge proofs (ZKPs) paired with blockchains offer a 

pragmatic path to verifiable, privacy-preserving AI model 

sharing. In our architecture, on-chain model commitments, 

policy anchors, and verifier interfaces combine with off-chain 

proving to certify that a specific hidden model executed a 

specific computation on hidden inputs—without exposing 

weights, data, or prompts. The simulation indicates that 

verification latency is already compatible with interactive API 

workflows (tens of milliseconds) and that proof sizes are 

manageable for periodic on-chain notarization. While prover 

time remains the main bottleneck, recursion/folding and 

sparsity-aware zkML techniques are narrowing that gap. 

Practical takeaway 

For near-term deployments, (i) use Groth16 when circuits are 

stable and low on-chain cost is paramount, (ii) prefer PLONK-

ish systems when circuit flexibility and ecosystem 

composability matter, and (iii) choose STARKs where 

transparency and long-horizon, post-quantum-leaning 

assumptions are prioritized. Across all options, ZK-friendly 

hashes (e.g., Poseidon/Rescue) and lookup-based gadgets 

reduce constraint counts and proving time. Recursively 

aggregating many inferences into a single proof further 

amortizes verification cost for high-throughput scenarios. 

Governance and compliance 

Binding license terms, usage scopes, and provenance claims to 

immutable model commitments allows policy-aware 

verification without over-disclosure. Optional proof-of-

learning attestations strengthen due diligence by providing 
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cryptographic evidence about aspects of the training process. 

To be useful across organizations, these assertions should align 

to shared schemas (license codes, dataset taxonomies, 

jurisdictional flags) so that verifiers can reason about 

compliance uniformly. 

Risk and limitations 

ZK protects the computation claim, not every privacy surface: 

side-channels, membership-inference risks from outputs, and 

prompt/metadata leakage must still be addressed with rate-

limiters, output filtering, and differential-privacy or alignment 

layers. Economic viability hinges on careful cost engineering 

(batching, off-chain verification with periodic anchoring, and 

hardware-accelerated provers). Finally, real-world performance 

depends on the chosen libraries and circuit designs—teams 

should benchmark with their target models and latency budgets. 

Outlook 

As zkML libraries add optimized operators for modern 

architectures and as folding schemes mature, we expect 

verifiable model APIs—and ultimately model marketplaces—

where buyers can pay only upon proof of correct, policy-

compliant service. In regulated domains (healthcare, finance, 

defense), this enables cross-organizational collaboration 

without surrendering IP or sensitive data. The next milestones 

are (1) standardized policy vocabularies for on-chain 

attestations, (2) turnkey recursion pipelines for batch proofs, 

and (3) repeatable reference stacks on mainstream chains. With 

these in place, zero-knowledge-backed AI exchange shifts from 

promising prototype to operational cornerstone for trustworthy, 

compliant AI. 
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