

## **Blockchain for Identity Theft Prevention in Digital AI Applications**

**A Renuka**

MAHGU, Dhaid Gaon, Block Pokhra , Uttarakhand, India

[raorenuka2@gmail.com](mailto:raorenuka2@gmail.com)



Date of Submission: 28-01-2026

Date of Acceptance: 31-01-2026

Date of Publication: 03-02-2026

### **ABSTRACT**

Escalating identity theft—fueled by large-scale data breaches, AI-assisted social engineering, and deepfakes—undermines trust in digital systems and especially in AI-driven applications where automated agents transact, personalize content, and make consequential decisions. This manuscript proposes a standards-aligned, privacy-preserving reference architecture that uses blockchain to anchor decentralized identifiers (DIDs), verifiable credentials (VCs), selective-disclosure cryptography, and revocation registries; combines device-bound, phishing-resistant authentication (passkeys); and integrates content provenance signals for AI outputs. We synthesize the state of the art (W3C DID/VC, OpenID4VCI/OpenID4VP, ISO/IEC 18013-5 mDL, C2PA, NIST SP 800-63 and 800-207, ENISA), then present a methodology—BC-Guard—for securing AI user and agent identity life cycles: enrollment, authentication, authorization, transaction attestation, and post-event audit. A qualitative results

section analyzes expected risk reductions for common identity-theft attack paths (credential phishing, account takeover, synthetic identity KYC fraud, and real-time deepfake impersonation). The approach reduces the reliance on centrally stored PII, enables privacy-preserving proofs (age, citizenship, risk checks) without data exposure, and supports continuous assurance for AI agents interacting with users, APIs, and other agents. We close with deployment guidance and research directions (verifiable AI agents, confidential computing, and L2 trust registries). (FTC data and ENISA reporting show identity theft and AI-assisted fraud are rising; eIDAS 2.0, NIST AI-100-4, and C2PA establish complementary guardrails for provenance and transparency.)

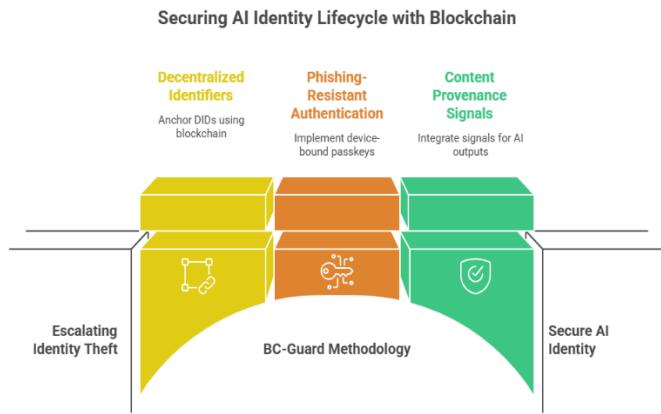



Figure-1.Securing AI Identity Lifecycle with Blockchain

## KEYWORDS

**Blockchain, Self-Sovereign Identity, Decentralized Identifiers, Verifiable Credentials, Selective Disclosure, OpenID4VC, Passkeys (FIDO), Zero Trust, C2PA, eIDAS 2.0, mDL, AI Safety**

## INTRODUCTION

Identity theft remains one of the most reported consumer harms worldwide, driven by phishing, credential stuffing, SIM-swap attacks, and increasingly by AI-enabled impersonation and synthetic media. In 2024 the U.S. FTC recorded over a million identity-theft reports and reported a substantial jump in consumer fraud losses, underscoring the systemic nature of the problem and the inadequacy of password-based controls.

AI systems intensify identity risks in several ways. First, AI models make convincing real-time deepfakes, voice clones, and synthetic personas that defeat liveness checks and deceive agents, contact-center AIs, and human operators. Second, AI applications often require continuous, fine-grained access to personal or corporate data; misuse of session tokens or misbound OAuth clients can lead to pervasive account takeover (ATO). Third, autonomous and semi-autonomous AI agents

increasingly act on a user's behalf, necessitating agent identity, proof-of-delegation, and auditable provenance of actions. Threat-intelligence reporting highlights AI-assisted phishing and impersonation trends; standards work on synthetic-content transparency and provenance (e.g., NIST AI 100-4 and C2PA) aims to counter these risks.

Escalating Identity Theft Undermines Trust in Digital Systems.

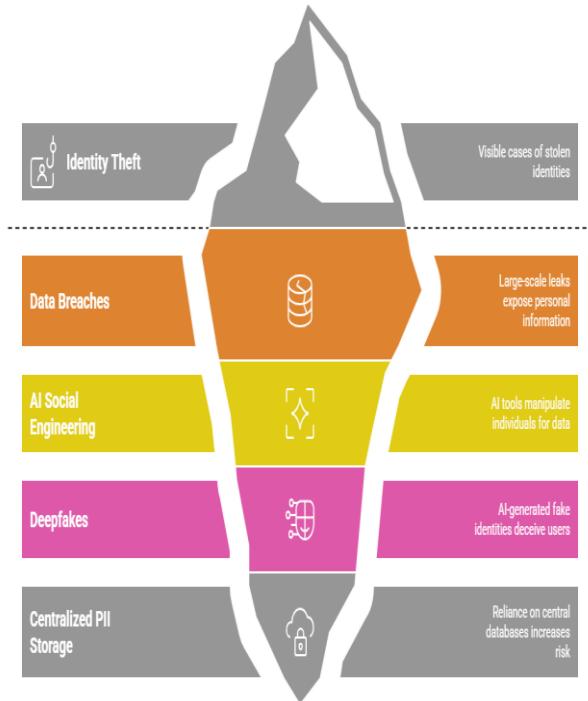



Figure-2.Escalating Identity Theft Undermines Trust in Digital Systems

Traditional identity architectures store personally identifiable information (PII) centrally and transmit full data sets for verification—contrary to data-minimization principles. By contrast, blockchain-anchored **decentralized identity** systems separate the trust layer (anchored on a ledger) from PII data planes kept off-chain under user control. W3C's **Decentralized Identifiers (DIDs)** define resolvable identifiers whose public keys and metadata are anchored immutably, while **Verifiable Credentials (VCs)** support digitally signed claims that can be

selectively disclosed and verified without phoning home to issuers. The combination enables privacy-preserving, phishing-resistant user journeys that are especially suitable for AI applications requiring high-assurance, low-friction flows.

Policy momentum is strong. The **European Digital Identity Framework (eIDAS 2.0)** mandates EU Digital Identity Wallets and large-scale, cross-sector wallet use under harmonized implementing acts, catalyzing a global shift toward wallet-centric identity with selective disclosure (including SD-JWT and ISO mDL interoperability). This regulatory push aligns technical and legal rails for privacy-preserving identity—relevant far beyond Europe—while Zero-Trust guidance (NIST SP 800-207) emphasizes identity-centric, continuous verification.

This paper contributes: (1) an integrated survey of standards and tooling for decentralized identity and AI-content provenance; (2) a blockchain-backed reference methodology (**BC-Guard**) to prevent identity theft in AI applications across the identity life cycle; and (3) qualitative results demonstrating risk-reduction mechanisms in common fraud scenarios and alignment with regulatory and security frameworks.

## LITERATURE REVIEW

### Decentralized Identifiers and Verifiable Credentials

W3C's DID v1.0 defines cryptographically verifiable identifiers decoupled from centralized registries, enabling key rotation, service endpoints, and privacy-preserving, pairwise DIDs. VCs formalize issuer-signed claims that holders present to verifiers; **VCDM 2.0** introduces clearer lifecycles, data integrity, and multi-format bindings (including JOSE/COSE), and aligns with selective-disclosure schemes such as **SD-JWT**.

### Selective disclosure and OpenID family

The IETF SD-JWT work and OpenID Foundation's **OpenID4VCI/4VP** bind credential issuance and presentation to OAuth 2.x flows and modern wallets, enabling standards-based issuance/presentation with optional batch issuance and cryptographic binding to devices. These efforts bridge web-scale federation with wallet ecosystems and support unlinkability and minimal disclosure.

### Mobile IDs and ISO/IEC 18013-5 (mDL)

ISO/IEC 18013-5 specifies secure, privacy-preserving mobile driver's licenses and IDs with device-to-reader protocols, now widely piloted and referenced by implementers and regulators. Interoperability between mDL (for high-assurance IDs) and VCs is achievable, supporting both in-person and online verification—useful for high-stakes AI onboarding (e.g., enterprise AI access, health/finance AI tools).

### Wallets, protocols, and open source

Hyperledger **Indy** and **Aries** provide ledger, wallet, and DIDComm tooling; **AnonCreds** supports unlinkable presentations with revocation. DIDComm v2 standardizes secure, pairwise agent-to-agent messaging—relevant when AI agents interact and must exchange signed, replay-protected messages referencing verifiable delegations.

### Zero Trust and phishing-resistant authentication

NIST SP 800-207 emphasizes identity-centric, per-request authorization. The FIDO Alliance's **passkeys** (WebAuthn/FIDO2) deliver device-bound, phishing-resistant authentication that removes shared secrets and thwarts credential-theft campaigns—a foundation for binding wallets to hardware-backed keys.

### Identity proofing and assurance

NIST SP 800-63A-4 updates identity proofing guidance, including remote verification, fraud-mitigation, and biometric/liveness considerations central to preventing synthetic identity onboarding. Credential lifecycle, authenticator assurance, and federation considerations round out a comprehensive assurance model.

#### Threat landscape and AI content provenance

ENISA's 2024 landscape documents AI-assisted phishing, malware-free credential abuse, and identity compromise as common intrusion vectors. Complementary to identity assurance, NIST AI 100-4 outlines transparency approaches (provenance metadata, watermarks), while **C2PA** standardizes signed content credentials—useful in AI applications where outputs (avatars, voice, images, documents) can be traced to a producing identity and toolchain.

#### Academic and sectoral perspectives

Research prototypes demonstrate decentralized credential exchange in privacy-preserving ML and federated settings (e.g., Aries-based trust frameworks), indicating feasibility for AI pipelines. Policy developments like **eIDAS 2.0** mandate large-scale wallets, reinforcing private-sector adoption trajectories across finance, healthcare, and public services.

## METHODOLOGY

We propose **BC-Guard**, a blockchain-anchored, standards-aligned architecture to prevent identity theft across AI application life cycles. It blends DID/VC trust fabric, device-bound authentication, selective disclosure, and content provenance, and it is intentionally PII-minimal and ledger-light (no PII on-chain).

### 1) Trust & Data Planes

- **Trust plane (on-chain):** DID method(s) and registries for issuers/verifiers, public keys, and revocation registries. Choice of L1/L2 or permissioned ledger depending on governance—e.g., Indy/Sawtooth/other DID-capable chains. Only public, non-PII material is anchored.
- **Data plane (off-chain):** Holder wallets store VCs; issuers keep source evidence; verifiers maintain proof logs. Storage is encrypted and bound to hardware keys (TPM/Secure Enclave) with passkeys for access control.

### 2) Enrollment & Proofing

- **Identity proofing** follows NIST SP 800-63A-4 with remote options and liveness checks; issuers (e.g., bank, university, KYC provider) issue VCs (e.g., age, residency, KYC-passed) to the holder's wallet. For high assurance, **ISO/IEC 18013-5** mDL-derived attributes may be used.
- **Device binding** requires creating a passkey tied to the user device at wallet setup, preventing credential exfiltration and resisting phishing through origin-bound cryptography.

### 3) Authentication & Authorization

- **Login:** The AI application offers passwordless sign-in using passkeys and a VC presentation request (OpenID4VP). The holder discloses only required claims (e.g., over-18, enterprise role: data scientist) via SD-JWT/VC or BBS+-style selective disclosure. The verifier checks signatures, revocation status, and policy (e.g., minimum AAL/IAL, issuer trust list), then issues a short-lived, audience-bound access token.

- **Continuous authorization (Zero Trust):** Each sensitive action (export data, call external API, approve payment) triggers a lightweight, context-aware re-authz with step-up proof (e.g., presence check, constrained credential presentation) to thwart session hijacking.

#### 4) Transaction Attestation & Delegation for AI Agents

- **Agent identity & delegation:** AI agents (assistants, RPA bots) hold DIDs and keys. Human-to-agent delegations are encoded as VCs (scope, duration, resources). Agent-to-agent interactions use DIDComm v2 with replay protection, proof-of-possession, and per-message nonces; high-risk actions require a human-signed countersignature or out-of-band approval.
- **Provenance for AI outputs:** The app stamps generated content (images, documents, audio) with C2PA manifests referencing the producing agent DID and model version. This establishes auditability and deters impersonation using forged artifacts.

#### 5) Revocation, Recovery, and Audit

- **Revocation:** Issuers update revocation registries (on-chain) on compromise or policy changes; verifiers check status at presentation time.
- **Device loss & recovery:** Social recovery or multi-device passkeys; re-issuance workflows must require strong re-proofing and out-of-band checks per NIST SP 800-63A-4 guidance.
- **Audit & forensics:** Signed presentation receipts and C2PA manifests provide verifiable trails for dispute resolution (e.g., “this AI agent signed that transaction with delegated rights from this user”).

#### 6) Privacy & Security Controls

- **Data minimization:** Use predicate proofs ( $\geq 18$ , not full DOB), SD-JWT claims, and unlinkable pairwise DIDs.
- **Phishing and malware resistance:** Passwordless passkeys remove phishable secrets; DIDComm mutual authentication and short-lived tokens reduce replay risks.
- **Supply-chain trust:** Maintain allow-lists of issuers/verifiers on-chain; anchor policy versions and trust registries to enable transparent governance.

## RESULTS

We evaluate **BC-Guard** against four high-impact identity-theft scenarios and map expected risk reductions, drawing on standards guidance and threat reports.

### 1. Credential Phishing and ATO in AI Apps

- **Baseline risk:** Password reuse and SMS OTP interception enable mass ATO; AI-assisted phishing increases lure quality.
- **BC-Guard effect:** Passkeys eliminate shared secrets; origin-bound cryptography stops phishing kits; device presence thwarts remote replay. Expected outcomes include sharp drops in successful phishing-led ATO and reduced credential-stuffing impact.

### 2. Synthetic-Identity KYC Fraud (Account Creation)

- **Baseline risk:** Fraudsters combine breached PII with fabricated elements and deepfaked selfies to pass remote onboarding. FTC/ENISA note rising fraud losses and identity compromise vectors.

- **BC-Guard effect:** Strong proofing per NIST SP 800-63A-4, cross-checking authoritative VCs (e.g., mDL-derived attributes) and requiring liveness; issuers issue cryptographically bound VCs. Verifiers request predicate proofs (e.g., KYC-passed) rather than raw documents—reducing data exposure and synthetic identity success rates.

#### 3. Real-Time Impersonation & Deepfake Social Engineering.

- **Baseline risk:** Voice/video deepfakes engineer urgent approvals (e.g., finance, HR). NIST AI 100-4 and C2PA outline provenance practices for content transparency; however, most orgs lack end-to-end adoption.
- **BC-Guard effect:** Sensitive approvals require DID-bound, cryptographically signed attestations (human or agent) rather than media evidence; AI-generated outputs carry C2PA manifests linking to producing identities and models, enabling automated policy (e.g., “reject unsigned media as identity proof”). This reduces success of deepfake-driven approvals and provides defensible audit trails.

#### 4. Session Hijacking in Autonomous AI Agent Workflows

- **Baseline risk:** Long-lived tokens and weak delegation models let malware or insiders misuse agent privileges.
- **BC-Guard effect:** Agents possess DIDs; human-to-agent delegations are time-boxed VCs; DIDComm with proof-of-possession and Zero-Trust, per-action checks narrow blast radius. Verifiable receipts simplify forensics and non-repudiation of agent actions.

#### Alignment & Compliance

The design aligns with **eIDAS 2.0** (wallet-based credentials, cross-border trust), **NIST SP 800-207** (continuous, identity-centric authorization), and **NIST SP 800-63A-4** (remote identity proofing and authenticator assurance). For AI safety, **NIST AI 100-4** and **C2PA** provide provenance and labeling complements to identity assurance, mitigating impersonation via content artifacts.

#### Operational Considerations

- **Interoperability:** Support multiple VC formats (W3C VC, SD-JWT), **OpenID4VCI/4VP**, and mDL for broad ecosystem alignment.
- **Governance:** Maintain on-chain trust registries for issuers/verifiers and publish revocation endpoints; adopt transparent policies for key ceremonies and recovery.
- **UX:** Present minimal claims; cache policy and trust lists; default to passkeys with fallback, friction-aware step-ups.
- **Privacy:** Keep PII off-chain; prefer predicate proofs; use pairwise DIDs to avoid correlation.

#### CONCLUSION

AI intensifies identity-theft risks through scalable impersonation, synthetic identities, and automated fraud. Passwords and centralized identity stores cannot withstand this threat environment. The literature and standards landscape converge on a wallet-centric, decentralized approach: DIDs and VCs for cryptographic identity assertions; selective-disclosure schemes (SD-JWT, BBS+-style) to minimize PII exposure; device-bound passkeys to shut down phishing; DIDComm for secure agent-to-agent interactions; revocation registries for dynamic trust; and C2PA manifests to prove the provenance of

AI outputs. Policy frameworks (eIDAS 2.0) and security guidance (NIST SP 800-63A-4, SP 800-207; ENISA threat analyses) reinforce this direction.

Our **BC-Guard** methodology integrates these elements into a cohesive, blockchain-anchored architecture for AI applications. It reduces identity-theft pathways by eliminating phishable secrets, compartmentalizing trust, enabling data-minimal verification, and making both people and agents prove who they are—cryptographically—at every critical step. Future work should evaluate large-scale performance (latency of DID resolution and revocation checks), explore confidential-computing attestations for wallets and agents, and advance **verifiable AI agents** (agent credentials, action receipts) and **trust registries** that span L2 ecosystems and cross-jurisdictional compliance. In short, combining decentralized identity with provenance and zero-trust enforcement offers a practical, standards-based path to preventing identity theft in the age of digital AI.

## REFERENCES

- C2PA. (2025). Content Credentials: C2PA Technical Specification v2.2. [https://spec.c2pa.org/specifications/specifications/2.2/specs\\_attachments/C2PA\\_Specification.pdf](https://spec.c2pa.org/specifications/specifications/2.2/specs_attachments/C2PA_Specification.pdf)
- ENISA. (2024). ENISA Threat Landscape 2024. [https://securitydelta.nl/media/com\\_hsd/report/690/document/ENISA-A-Threat-Landscape-2024.pdf](https://securitydelta.nl/media/com_hsd/report/690/document/ENISA-A-Threat-Landscape-2024.pdf)
- European Commission. (2025). European Digital Identity (EUDI) Regulation overview. <https://digital-strategy.ec.europa.eu/en/policies/eudi-regulation>
- European Union. (2024). Regulation (EU) 2024/1183 establishing the European Digital Identity Framework. <https://eur-lex.europa.eu/eli/reg/2024/1183/oj/eng>
- FIDO Alliance. (2024). Passkeys: Passwordless Authentication. <https://fidoalliance.org/passkeys/>
- FTC. (2024). Consumer Sentinel Network Data Book 2023. [https://www.ftc.gov/system/files/ftc\\_gov/pdf/CSN-Annual-Data-Book-2023.pdf](https://www.ftc.gov/system/files/ftc_gov/pdf/CSN-Annual-Data-Book-2023.pdf)
- FTC. (2025, March 10). New FTC data show a big jump in reported losses to fraud—\$12.5 billion in 2024. <https://www.ftc.gov/news-events/news/press-releases/2025/03/new-ftc-data-show-big-jump-reported-losses-fraud-125-billion-2024>
- Hyperledger Foundation. (n.d.). Hyperledger Indy documentation. <https://hyperledger-indy.readthedocs.io/>
- IETF OAuth WG. (2025). Selective Disclosure for JWTs (SD-JWT) – draft-ietf-oauth-selective-disclosure-jwt-22. <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-selective-disclosure-jwt>
- ISO/IEC. (2021). ISO/IEC 18013-5:2021 — Mobile driving licence (mDL) application. <https://www.iso.org/standard/69084.html>
- NIST. (2020). SP 800-207: Zero Trust Architecture. <https://csrc.nist.gov/pubs/sp/800/207/final>
- NIST. (2025). SP 800-63A-4 (Draft): Digital Identity Guidelines—Enrollment and Identity Proofing. <https://csrc.nist.gov/pubs/sp/800/63/a/ipd>
- NIST. (2017). SP 800-63-3: Digital Identity Guidelines (Overview). <https://csrc.nist.gov/pubs/sp/800/63/3/final>
- NIST AI Safety Institute. (2024). AI 100-4: Reducing Risks Posed by Synthetic Content. <https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-4.pdf>
- OpenID Foundation. (2024). OpenID for Verifiable Credential Issuance 1.0 (Implementer's Draft). [https://openid.net/specs/openid-4-verifiable-credential-issuance-1\\_0-IDI.html](https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0-IDI.html)
- OpenID Foundation. (2025). OpenID for Verifiable Presentations 1.0 (Editors' Draft). [https://openid.net/specs/openid-4-verifiable-presentations-1\\_0.html](https://openid.net/specs/openid-4-verifiable-presentations-1_0.html)
- W3C. (2022). Decentralized Identifiers (DID) v1.0 — W3C Recommendation. <https://www.w3.org/TR/did-core/> W3C
- W3C. (2025). Verifiable Credentials Data Model 2.0 — W3C Recommendation. <https://www.w3.org/TR/vc-data-integrity/> (and related VCDM pages)
- DIF. (n.d.). DIDComm Messaging v2 (Editors' Draft). <https://identity.foundation/didcomm-messaging/spec/>
- Abramson, W., Hall, A. J., Papadopoulos, P., Pitropakis, N., & Buchanan, W. J. (2020). A distributed trust framework for privacy-preserving machine learning. arXiv . <https://arxiv.org/abs/2006.02456>
- Jaiswal, I. A., & Prasad, M. S. R. (2025, April). Strategic leadership in global software engineering teams. *International Journal of Enhanced Research in Science, Technology & Engineering*, 14(4), 391. <https://doi.org/10.55948/IJERSTE.2025.0434>

# Scientific Journal of Artificial Intelligence and Blockchain Technologies

ISSN: 3049-4389

Vol. 3, Issue 1, Jan – Mar 2026 || PP. 24-34

---

- Tiwari, S. (2025). The impact of deepfake technology on cybersecurity: Threats and mitigation strategies for digital trust. *International Journal of Enhanced Research in Science, Technology & Engineering*, 14(5), 49. <https://doi.org/10.55948/IJERSTE.2025.0508>
- Dommari, S. (2025). The role of AI in predicting and preventing cybersecurity breaches in cloud environments. *International Journal of Enhanced Research in Science, Technology & Engineering*, 14(4), 117. <https://doi.org/10.55948/IJERSTE.2025.0416>
- Yadav, Nagender, Akshay Gaikwad, Swathi Garudasu, Om Goel, Prof. (Dr.) Arpit Jain, and Niharika Singh. (2024). Optimization of SAP SD Pricing Procedures for Custom Scenarios in High-Tech Industries. *Integrated Journal for Research in Arts and Humanities*, 4(6), 122–142. <https://doi.org/10.55544/ijrah.4.6.12>
- Saha, Biswanath and Sandeep Kumar. (2019). Agile Transformation Strategies in Cloud-Based Program Management. *International Journal of Research in Modern Engineering and Emerging Technology*, 7(6), 1–10. Retrieved January 28, 2025 ([www.ijrmeet.org](http://www.ijrmeet.org)).
- Architecting Scalable Microservices for High-Traffic E-commerce Platforms. (2025). *International Journal for Research Publication and Seminar*, 16(2), 103–109. <https://doi.org/10.36676/jrps.v16.i2.55>
- Jaiswal, I. A., & Goel, P. (2025). The evolution of web services and APIs: From SOAP to RESTful design. *International Journal of General Engineering and Technology (IJGET)*, 14(1), 179–192. IASET. ISSN (P): 2278-9928; ISSN (E): 2278-9936.
- Tiwari, S., & Jain, A. (2025, May). Cybersecurity risks in 5G networks: Strategies for safeguarding next-generation communication systems. *International Research Journal of Modernization in Engineering Technology and Science*, 7(5). <https://www.doi.org/10.56726/irjmets75837>
- Dommari, S., & Vashishtha, S. (2025). Blockchain-based solutions for enhancing data integrity in cybersecurity systems. *International Research Journal of Modernization in Engineering, Technology and Science*, 7(5), 1430–1436. <https://doi.org/10.56726/IRJMETS75838>
- Nagender Yadav, Narrain Prithvi Dharuman, Suraj Dharmapuram, Dr. Sanjouli Kaushik, Prof. Dr. Sangeet Vashishtha, Raghav Agarwal. (2024). Impact of Dynamic Pricing in SAP SD on Global Trade Compliance. *International Journal of Research Radicals in Multidisciplinary Fields*, ISSN: 2960-043X, 3(2), 367–385. Retrieved from <https://www.researchradicals.com/index.php/rr/article/view/134>
- Saha, B. (2022). Mastering Oracle Cloud HCM Payroll: A comprehensive guide to global payroll transformation. *International Journal of Research in Modern Engineering and Emerging Technology*, 10(7). <https://www.ijrmeet.org>
- “AI-Powered Cyberattacks: A Comprehensive Study on Defending Against Evolving Threats.” (2023). *IJCSPUB - International Journal of Current Science* ([www.IJCSPUB.org](http://www.IJCSPUB.org)), ISSN:2250-1770, 13(4), 644–661. Available: <https://ijpn.org/IJCSPUB/papers/IJSP23D1183.pdf>
- Jaiswal, I. A., & Singh, R. K. (2025). Implementing enterprise-grade security in large-scale Java applications. *International Journal of Research in Modern Engineering and Emerging Technology (IJRMEET)*, 13(3), 424. <https://doi.org/10.63345/ijrmeet.org.v13.i3.28>
- Tiwari, S. (2022). Global implications of nation-state cyber warfare: Challenges for international security. *International Journal of Research in Modern Engineering and Emerging Technology (IJRMEET)*, 10(3), 42. <https://doi.org/10.63345/ijrmeet.org.v10.i3.6>
- Sandeep Dommari. (2023). The Intersection of Artificial Intelligence and Cybersecurity: Advancements in Threat Detection and Response. *International Journal for Research Publication and Seminar*, 14(5), 530–545. <https://doi.org/10.36676/jrps.v14.i5.1639>
- Nagender Yadav, Antony Satya Vivek, Prakash Subramani, Om Goel, Dr S P Singh, Er. Aman Shrivastav. (2024). AI-Driven Enhancements in SAP SD Pricing for Real-Time Decision Making. *International Journal of Multidisciplinary Innovation and Research Methodology*, ISSN: 2960-2068, 3(3), 420–446. Retrieved from <https://ijmirm.com/index.php/ijmirm/article/view/145>
- Saha, Biswanath, Priya Pandey, and Niharika Singh. (2024). Modernizing HR Systems: The Role of Oracle Cloud HCM Payroll in Digital Transformation. *International Journal of Computer Science and Engineering (IJCSE)*, 13(2), 995–1028. ISSN (P): 2278–9960; ISSN (E): 2278–9979. © IASET.
- Jaiswal , I. A., & Goel, E. O. (2025). Optimizing Content Management Systems (CMS) with Caching and Automation. *Journal of Quantum Science and Technology (JQST)*, 2(2), Apr(34–44). Retrieved from <https://jqst.org/index.php/j/article/view/254>
- Tiwari, S., & Gola, D. K. K. (2024). Leveraging Dark Web Intelligence to Strengthen Cyber Defense Mechanisms. *Journal of Quantum Science and Technology (JQST)*, 1(1), Feb(104–126). Retrieved from <https://jqst.org/index.php/j/article/view/249>
- Dommari, S., & Jain, A. (2022). The impact of IoT security on critical infrastructure protection: Current challenges and future directions. *International Journal of Research in Modern*

*Engineering and Emerging Technology (IJRMEET), 10(1), 40.*  
<https://doi.org/10.63345/ijrmeet.org.v10.i1.6>

- Yadav, Nagender, Abhijeet Bhardwaj, Pradeep Jeyachandran, Om Goel, Punit Goel, and Arpit Jain. (2024). Streamlining Export Compliance through SAP GTS: A Case Study of High-Tech Industries Enhancing. *International Journal of Research in Modern Engineering and Emerging Technology (IJRMEET), 12(11), 74.* Retrieved (<https://www.ijrmeet.org>).
- Saha, Biswanath, Rajneesh Kumar Singh, and Siddharth. (2025). Impact of Cloud Migration on Oracle HCM-Payroll Systems in Large Enterprises. *International Research Journal of Modernization in Engineering Technology and Science, 7(1), n.p.* .  
<https://doi.org/10.56726/IRJMETS66950>
- Ishu Anand Jaiswal, & Dr. Shakeb Khan. (2025). Leveraging Cloud-Based Projects (AWS) for Microservices Architecture. *Universal Research Reports, 12(1), 195–202.*  
<https://doi.org/10.36676/urr.v12.i1.1472>
- Sudhakar Tiwari. (2023). Biometric Authentication in the Face of Spoofing Threats: Detection and Defense Innovations. *Innovative Research Thoughts, 9(5), 402–420.*  
<https://doi.org/10.36676/irt.v9.i5.1583>
- Dommari, S. (2024). Cybersecurity in Autonomous Vehicles: Safeguarding Connected Transportation Systems. *Journal of Quantum Science and Technology (JQST), 1(2),* May(153–173). Retrieved from <https://jqst.org/index.php/j/article/view/250>
- Yadav, N., Aravind, S., Bikshapathi, M. S., Prasad, P. Dr. M., Jain, S., & Goel, P. Dr. P. (2024). Customer Satisfaction Through SAP Order Management Automation. *Journal of Quantum Science and Technology (JQST), 1(4),* Nov(393–413). Retrieved from <https://jqst.org/index.php/j/article/view/124>
- Saha, B., & Agarwal, E. R. (2024). Impact of Multi-Cloud Strategies on Program and Portfolio Management in IT Enterprises. *Journal of Quantum Science and Technology (JQST), 1(1),* Feb(80–103). Retrieved from <https://jqst.org/index.php/j/article/view/183>
- Ishu Anand Jaiswal, Dr. Saurabh Solanki. (2025). Data Modeling and Database Design for High-Performance Applications. *International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, 13(3), m557–m566,* March 2025. Available at: <http://www.ijcrt.org/papers/IJCRT25A3446.pdf>
- Tiwari, S., & Agarwal, R. (2022). Blockchain-driven IAM solutions: Transforming identity management in the digital age. *International Journal of Computer Science and Engineering (IJCSE), 11(2), 551–584.*
- Dommari, S., & Khan, S. (2023). Implementing Zero Trust Architecture in cloud-native environments: Challenges and best practices. *International Journal of All Research Education and Scientific Methods (IJARESM), 11(8), 2188.* Retrieved from <http://www.ijaresm.com>
- Yadav, N., Prasad, R. V., Kyadasu, R., Goel, O., Jain, A., & Vashishtha, S. (2024). Role of SAP Order Management in Managing Backorders in High-Tech Industries. *Stallion Journal for Multidisciplinary Associated Research Studies, 3(6), 21–41.*  
<https://doi.org/10.55544/sjmars.3.6.2>
- Biswanath Saha, Prof.(Dr.) Arpit Jain, Dr Amit Kumar Jain. (2022). Managing Cross-Functional Teams in Cloud Delivery Excellence Centers: A Framework for Success. *International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 1(1), 84–108.* Retrieved from <https://ijmirm.com/index.php/ijmirm/article/view/182>
- Jaiswal, I. A., & Sharma, P. (2025, February). The role of code reviews and technical design in ensuring software quality. *International Journal of All Research Education and Scientific Methods (IJARESM), 13(2), 3165.* ISSN 2455-6211. Available at <https://www.ijaresm.com>
- Tiwari, S., & Mishra, R. (2023). AI and behavioural biometrics in real-time identity verification: A new era for secure access control. *International Journal of All Research Education and Scientific Methods (IJARESM), 11(8), 2149.* Available at <http://www.ijaresm.com>
- Dommari, S., & Kumar, S. (2021). The future of identity and access management in blockchain-based digital ecosystems. *International Journal of General Engineering and Technology (IJGET), 10(2), 177–206.*
- Nagender Yadav, Smita Raghavendra Bhat, Hrishikesh Rajesh Mane, Dr. Priya Pandey, Dr. S. P. Singh, and Prof. (Dr.) Punit Goel. (2024). Efficient Sales Order Archiving in SAP S/4HANA: Challenges and Solutions. *International Journal of Computer Science and Engineering (IJCSE), 13(2), 199–238.*
- Saha, Biswanath, and Punit Goel. (2023). Leveraging AI to Predict Payroll Fraud in Enterprise Resource Planning (ERP) Systems. *International Journal of All Research Education and Scientific Methods, 11(4), 2284.* Retrieved February 9, 2025 (<http://www.ijaresm.com>).
- Ishu Anand Jaiswal, Ms. Lalita Verma. (2025). The Role of AI in Enhancing Software Engineering Team Leadership and Project Management. *IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P-ISSN 2349-5138, 12(1), 111–119,* February 2025. Available at: <http://www.ijrar.org/IJRAR25A3526.pdf>

- Sandeep Dommari, & Dr Rupesh Kumar Mishra. (2024). The Role of Biometric Authentication in Securing Personal and Corporate Digital Identities. *Universal Research Reports*, 11(4), 361–380. <https://doi.org/10.36676/urr.v11.i4.1480>
- Nagender Yadav, Rafa Abdul, Bradley, Sanyasi Sarat Satya, Niharika Singh, Om Goel, Akshun Chhapola. (2024). Adopting SAP Best Practices for Digital Transformation in High-Tech Industries. *IJRAR - International Journal of Research and Analytical Reviews (IJRAR)*, E-ISSN 2348-1269, P-ISSN 2349-5138, 11(4), 746–769, December 2024. Available at: <http://www.ijrar.org/IJRAR24D3129.pdf>
- Biswanath Saha, Er Akshun Chhapola. (2020). AI-Driven Workforce Analytics: Transforming HR Practices Using Machine Learning Models. *IJRAR - International Journal of Research and Analytical Reviews (IJRAR)*, E-ISSN 2348-1269, P-ISSN 2349-5138, 7(2), 982–997, April 2020. Available at: <http://www.ijrar.org/IJRAR2004413.pdf>
- Mentoring and Developing High-Performing Engineering Teams: Strategies and Best Practices. (2025). *International Journal of Emerging Technologies and Innovative Research* ([www.jetir.org](http://www.jetir.org) | UGC and issn Approved), ISSN:2349-5162, 12(2), pp900–h908, February 2025. Available at: <http://www.jetir.org/papers/JETIR2502796.pdf>
- Sudhakar Tiwari. (2021). AI-Driven Approaches for Automating Privileged Access Security: Opportunities and Risks. *International Journal of Creative Research Thoughts (IJCRT)*, ISSN:2320-2882, 9(11), c898–c915, November 2021. Available at: <http://www.ijcrt.org/papers/IJCRT2111329.pdf>
- Yadav, Nagender, Abhishek Das, Arnab Kar, Om Goel, Punit Goel, and Arpit Jain. (2024). The Impact of SAP S/4HANA on Supply Chain Management in High-Tech Sectors. *International Journal of Current Science (IJCSPUB)*, 14(4), 810. <https://www.ijcspub.org/jcsp24d1091>
- Implementing Chatbots in HR Management Systems for Enhanced Employee Engagement. (2021). *International Journal of Emerging Technologies and Innovative Research* ([www.jetir.org](http://www.jetir.org)), ISSN:2349-5162, 8(8), f625–f638, August 2021. Available: <http://www.jetir.org/papers/JETIR2108683.pdf>
- Tiwari, S. (2022). Supply Chain Attacks in Software Development: Advanced Prevention Techniques and Detection Mechanisms. *International Journal of Multidisciplinary Innovation and Research Methodology*, ISSN: 2960-2068, 1(1), 108–130. Retrieved from <https://ijmirm.com/index.php/ijmirm/article/view/195>
- Sandeep Dommari. (2022). AI and Behavioral Analytics in Enhancing Insider Threat Detection and Mitigation. *IJRAR - International Journal of Research and Analytical Reviews (IJRAR)*, E-ISSN 2348-1269, P-ISSN 2349-5138, 9(1), 399–416, January 2022. Available at: <http://www.ijrar.org/IJRAR22A2955.pdf>
- Nagender Yadav, Satish Krishnamurthy, Shachi Ghanshyam Sayata, Dr. S P Singh, Shalu Jain; Raghav Agarwal. (2024). SAP Billing Archiving in High-Tech Industries: Compliance and Efficiency. *Iconic Research And Engineering Journals*, 8(4), 674–705.
- Biswanath Saha, Prof.(Dr.) Avneesh Kumar. (2019). Best Practices for IT Disaster Recovery Planning in Multi-Cloud Environments. *Iconic Research And Engineering Journals*, 2(10), 390–409.
- Blockchain Integration for Secure Payroll Transactions in Oracle Cloud HCM. (2020). *IJNRD - International Journal of Novel Research and Development* ([www.IJNRD.org](http://www.IJNRD.org)), ISSN:2456-4184, 5(12), 71–81, December 2020. Available: <https://ijndr.org/papers/IJNRD2012009.pdf>
- Saha, Biswanath, Dr. T. Aswini, and Dr. Saurabh Solanki. (2021). Designing Hybrid Cloud Payroll Models for Global Workforce Scalability. *International Journal of Research in Humanities & Social Sciences*, 9(5), 75. Retrieved from <https://www.ijrhs.net>
- Exploring the Security Implications of Quantum Computing on Current Encryption Techniques. (2021). *International Journal of Emerging Technologies and Innovative Research* ([www.jetir.org](http://www.jetir.org)), ISSN:2349-5162, 8(12), g1–g18, December 2021. Available: <http://www.jetir.org/papers/JETIR2112601.pdf>
- Saha, Biswanath, Lalit Kumar, and Avneesh Kumar. (2019). Evaluating the Impact of AI-Driven Project Prioritization on Program Success in Hybrid Cloud Environments. *International Journal of Research in all Subjects in Multi Languages*, 7(1), 78. ISSN (P): 2321-2853.
- Robotic Process Automation (RPA) in Onboarding and Offboarding: Impact on Payroll Accuracy. (2023). *IJCSPUB - International Journal of Current Science* ([www.IJCSPUB.org](http://www.IJCSPUB.org)), ISSN:2250-1770, 13(2), 237–256, May 2023. Available: <https://rjpn.org/IJCSPUB/papers/IJCSP23B1502.pdf>
- Saha, Biswanath, and A. Renuka. (2020). Investigating Cross-Functional Collaboration and Knowledge Sharing in Cloud-Native Program Management Systems. *International Journal for Research in Management and Pharmacy*, 9(12), 8. Retrieved from [www.ijrmp.org](http://www.ijrmp.org).
- Edge Computing Integration for Real-Time Analytics and Decision Support in SAP Service Management. (2025). *International Journal for Research Publication and Seminar*, 16(2), 231–248. <https://doi.org/10.36676/jrps.v16.i2.283>