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ABSTRACT

Autonomous vehicles (AVs) promise safer and more efficient mobility but are exposed to an evolving attack surface spanning
on-board sensors, in-vehicle networks, over-the-air (OTA) software updates, and vehicle-to-everything (V2X) communications.
Traditional perimeter defenses and centralized public-key infrastructures (PKIs) struggle to keep pace with adversarial machine
learning (ML), Sybil attacks in vehicular networks, and supply-chain compromises. This manuscript proposes an end-to-end
security architecture that fuses artificial intelligence (AI) with a permissioned blockchain to deliver verifiable identity, tamper-
evident telemetry, decentralized policy enforcement, and adaptive intrusion detection. The architecture binds device and model
identities to decentralized identifiers (DIDs), anchors data and update artifacts to an immutable ledger, and coordinates a
privacy-preserving federated-learning loop to continuously refine anomaly detectors. We describe the threat model and system
components (edge validators, roadside units, OEM validators, on-vehicle guardians), define a trust and attestation workflow,
and integrate Al modules for CAN-bus anomaly detection and V2X trust scoring. A simulation study using realistic traffic
patterns evaluates detection efficacy, latency, and ledger throughput under benign and adversarial conditions (false-data
injection, spoofing, replay, and Sybil attacks). Statistical analysis across 30 independent runs shows significant improvements
in true positive rate (TPR), false positive rate (FPR), and end-to-end decision latency compared with a PKI-only baseline, while
maintaining transaction throughput suitable for V2X policy events. We conclude that AI-Blockchain co-design can harden AV
ecosystems by coupling adaptive detection with cryptographic accountability, and we discuss deployment considerations,

limitations, and paths to certification-grade assurance.
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Figure-1.Securing Autonomous Vehicles with AI-Blockchain
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INTRODUCTION

Autonomous vehicles embody a tightly coupled cyber-physical system: perception stacks ingest multi-modal sensor data (camera,
LiDAR, radar, GNSS); planning and control loops operate at millisecond time scales; and connectivity layers exchange safety-critical
messages with infrastructure and nearby vehicles. Security failures anywhere along this chain can manifest as hazardous behaviors in
the physical world. As AV adoption scales, adversaries gain incentives to exploit software defects, spoof sensor inputs, poison ML
models, or subvert OTA pipelines. Moreover, vehicular ecosystems are distributed and heterogeneous: different OEMs, suppliers, and

municipalities must interoperate without trusting a single central operator.

Conventional defenses show cracks under these constraints. Centralized PKI for V2X identity suffers from key lifecycle complexity and
single points of failure. Event logging to siloed databases hampers cross-domain forensics and supply-chain transparency. Static rule-
based IDSs cannot adapt to evolving attack patterns or local driving contexts. Meanwhile, purely Al-driven defenses may excel at pattern
recognition but struggle to produce auditability, provenance guarantees, and tamper-resistant evidence acceptable to regulators and

courts.

A complementary pairing of Al and blockchain addresses these gaps. Permissioned ledgers operated by OEMs, infrastructure providers,

and safety authorities can maintain shared, tamper-evident state for identities, software bill of materials (SBOM) hashes, update
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manifests, and high-level safety events. Smart contracts can encode cross-organizational policies—e.g., revoking credentials or
quarantining misbehaving nodes—without introducing centralized control. Al modules running on vehicles and at the edge provide
continuous, context-aware detection and trust scoring. Federated learning leverages fleet diversity while keeping raw driving data local,

with the ledger serving as a coordination, attestation, and incentive layer.

Enhancing AV Security with Al-Blockchain Integration
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Figure-2.Enhancing AV Security with AI-Blockchain Integration

Contributions

This manuscript makes four contributions:

1. A reference Al-Blockchain architecture for AV security covering identity, attestation, OTA assurance, V2X trust, and runtime

anomaly detection.

2. A detailed threat model spanning sensor spoofing, adversarial ML, V2X Sybil/replay, insider updates, and privacy risks.

3. A simulation methodology with attack injection, realistic traffic patterns, and edge-based validation to assess latency and

detection efficacy.

4. Statistical evidence that the proposed system outperforms a PKI-only baseline across TPR, FPR, and end-to-end decision

latency, while sustaining ledger throughput compatible with policy events.

LITERATURE REVIEW
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Standardized approaches (e.g., SCMS-like certificate structures) provide pseudonymous credentials for vehicles but require centralized
or hierarchical authorities to issue, rotate, and revoke keys. Large-scale revocation under fast-moving attack campaigns has been
identified as a bottleneck, and credential misuse detection is often reactive. Moreover, cross-jurisdiction interoperability remains

challenging as regional authorities adopt differing schemes.

Blockchain for Vehicular Networks

Research has explored public and permissioned ledgers for vehicular data sharing, incentivized reporting, and secure marketplaces.
Public chains struggle with latency and governance fit for safety-critical settings. Permissioned Byzantine-fault-tolerant (BFT) ledgers
offer sub-second finality and configurable membership but require careful partitioning (e.g., channels per region) to scale with traffic
and privacy constraints. Prior works show promise in tamper-evident logging of events and OTA manifests, but integration with runtime

Al and model governance is less mature.

Al-Driven IDS for AVs

On-vehicle ML detectors (autoencoders, LSTMs, graph models) can flag anomalies on the CAN bus, Ethernet backbones, and V2X
message streams. However, detectors degrade under distribution shift (weather, geography, fleet differences) and adversarial examples.
Federated learning and continual learning mitigate these issues, yet they require robust aggregation and defenses against poisoned

updates.

Model and Data Provenance

SBOMs and signed artifacts (containers, models) are advancing in mainstream DevSecOps. For AVs, maintaining end-to-end
provenance from training data to deployed model is essential. Cryptographic anchoring (hash commitments, transparency logs) increases
accountability. Emerging privacy techniques (secure aggregation, differential privacy, and zero-knowledge proofs) allow verification of

protocol adherence without revealing sensitive telemetry.

Gaps

What is missing is a cohesive design where: (i) identities and policies are jointly enforced across stakeholders; (ii) runtime Al is adaptive
yet accountable; (iii) federated learning is auditable and robust to poisoning; and (iv) all of the above achieve latency compatible with
AV control loops and V2X safety messaging. Our architecture aims to fill this gap with a practical co-design that respects timing,

privacy, and governance constraints.

METHODOLOGY

System Overview

The proposed system comprises four planes:
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1. Identity & Governance Plane (Permissioned Blockchain): A BFT ledger (e.g., HotStuff/Tendermint-class) is operated by a
consortium of OEMs, infrastructure operators, and transport authorities. It stores DIDs for vehicles, roadside units (RSUs),
validators, and models; certificate anchors; revocation lists; SBOM hashes; and high-level events. Smart contracts encode
policies such as credential rotation windows, misbehavior scoring thresholds, and quarantine workflows.

2. Data Plane (On-Vehicle & Edge): Each vehicle hosts a Security Guardian: (a) a CAN/Ethernet monitor; (b) an Al anomaly
detector for in-vehicle traffic; (c) a V2X trust scorer that fuses message semantics with reputation; and (d) a policy enforcement
module that can degrade autonomy or request human takeover. Edge nodes at RSUs and micro-data centers host validators,
cache policies, and run heavier ML models for cross-vehicle correlation.

3. Update & Model Plane (OTA + FL): OTA update manifests and model artifacts are signed by OEMs, hashed, and anchored
to the ledger. Vehicles verify manifest hashes prior to install. A federated learning (FL) loop periodically trains local detectors;
encrypted gradient updates are securely aggregated at edge servers. Aggregation receipts and model version hashes are recorded
on-chain. Optional secure aggregation and clipping defend against poisoning; differentially private noise can be added where
legally required.

4. Forensics & Transparency Plane: Critical events (e.g., threshold-exceeding anomalies, policy triggers) are committed to the
ledger as hashed summaries with off-chain encrypted payloads. This enables cross-stakeholder audits without leaking personal

data.

Threat Model

We consider: (a) network attacks (replay, Sybil, false-data injection in V2X; DoS on RSUs); (b) sensor spoofing (GNSS spoofing,
camera injection); (c) in-vehicle network attacks (malicious ECUs, message injection); (d) adversarial ML (poisoned updates, evasion);
and (e) supply-chain/OTA (tampered firmware, rogue certificates). The adversary may compromise a subset of vehicles, RSUs, or an
OEM supplier but not >1/3 of BFT validators. Physical capture of a single vehicle is in scope; widespread validator collusion is out of

scope.

Identity & Policy Enforcement

Each entity holds a DID document with verifiable credentials (VCs) issued by its owner (OEM, road authority). The ledger manages
credential status and revocation. Policy contracts maintain a Reputation Score for DIDs based on: anomaly reports (weighted by reporter
reputation), cryptographic proofs of misbehavior (e.g., double-signing), and external attestations (inspection results). When a score dips
below thresholds, contracts automatically mark the DID as restricted, forcing vehicles and RSUs to: (i) deprioritize data from that source;

(i1) require additional proofs; or (iii) refuse interactions.

Al Modules

1. In-Vehicle Anomaly Detector: A lightweight autoencoder monitors CAN/Ethernet features (message ID frequencies, inter-
arrival times, payload entropy). It runs at >100 Hz with a sliding window. Thresholds adapt via local continual learning

constrained by safety bounds and reference baselines anchored on-chain.
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2. V2X Trust Scorer: A graph-based model ingests message content (BSM/CAM fields), spatiotemporal consistency, and peer
relationships to compute per-sender trust. It penalizes outliers and dense clusters with low diversity (indicative of Sybil
swarms). Edge nodes fuse signals across vehicles to dampen localized spoofing.

3. Federated Learning (FL): Vehicles train local updates on recent data; edge aggregators compute robust averages with outlier
rejection (e.g., coordinate-wise median, clipping). Aggregation events and resulting model hash digests are written to the ledger.

Participants with persistently anomalous updates are down-weighted by policy.

OTA Assurance and Model Provenance

All OTA artifacts include SBOMs. Update pipelines produce transparency records: source commit hashes, build system attestations,
and reproducible-build proofs where feasible. Vehicles only accept artifacts whose hash chains anchor to the ledger and whose issuing
DID is in good standing. For ML models, the training data manifest and hyperparameters are summarized and anchored (privacy-

preserving), enabling later audits.

Privacy Considerations

Raw sensor data never leaves vehicles by default. FL updates are optionally secured with secure aggregation. On-chain commitments
are hashes of redacted records; detailed payloads remain off-chain with access controlled via attribute-based encryption and auditable

by warrant or policy.

STATISTICAL ANALYSIS

We compare the proposed Al-Blockchain system to a PKI-Only Baseline (conventional certificates + rules-based IDS). Each
configuration runs 30 independent simulation seeds per scenario (urban grid, mixed suburban, highway platooning) with identical traffic
and attack schedules. Primary metrics are True Positive Rate (TPR) and False Positive Rate (FPR) for attack detection, End-to-End
Decision Latency (anomaly to enforceable action), V2X Policy Event Latency (contract execution to vehicle receipt), and Ledger
Throughput (policy tx/s). After verifying normality (Shapiro-Wilk, a=0.05), we apply two-sample t-tests; otherwise, Wilcoxon rank-
sum tests. For all metrics, 95% confidence intervals (Cls) are reported. Effect sizes (Cohen’s d or rank-biserial r) contextualize practical

significance.

Summary Table (Aggregated Across Scenarios; n=90 per group)

Metric PKI-Only Baseline Al-Blockchain A (Absolute) Test (p-value)

TPR (1) 0.81 0.92 +0.11 t-test p < 0.001

FPR (}) 0.072 0.031 —0.041 t-test p < 0.001

Decision Latency, ms (]) 145 108 -37 t-test p <0.001
Policy Event Latency, ms (|) 420 185 —235 t-test p <0.001
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Figure-3.Statistical Analysis

Notes: Decision latency includes detector inference, policy evaluation, and actuation signaling. Policy event latency measures contract

commit to on-vehicle receipt via RSU cache. Ledger throughput is measured only for the AI-Blockchain system under mixed workloads;

baseline has no ledger.

SIMULATION RESEARCH

Environment

We implement a co-simulation environment combining:

o Traffic & V2X: SUMO traffic simulator with OMNeT++/Veins for DSRC/C-V2X-like messaging at 10 Hz per vehicle. Three

maps: (i) 4x4 urban grid with signalized intersections; (ii) suburban arterial network with roundabouts; (iii) highway platooning

with lane changes.

e  Attacks: False-data injection (position/velocity drift), replay (stale BSMs), Sybil (10-50 clones with randomized IDs), GNSS

spoofing (uniform drift + jitter), and in-vehicle CAN injection (ID flooding, payload mutation). Attacks begin after a 60-second

warm-up and last 180-300 seconds per run.
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o Edge & Ledger: 21 validators across OEM and RSU operators (BFT, 1-second block time, pipelined). RSU caches subscribe
to contract events and push deltas to vehicles.
e Vehicles: 200 vehicles in urban/suburban; 120 in highway scenario. Guardians run on-vehicle inference with 2—5 ms forward

pass time and resource budgets compatible with embedded GPUs/NPUs.

Workload & Parameters

e  Message loss modeled via Rayleigh fading; average packet error rate 3—7% depending on scenario.

e Background benign anomalies (e.g., sudden braking due to pedestrian) included to test precision.

e IDS models: CAN autoencoder (bottleneck ratio 0.25), trained on 10 minutes of benign drive logs; V2X trust scorer (graph
neural model) trained on labeled normal/attack sequences (5:1 class ratio) and adapted via FL every 5 minutes of simulated
time.

o FL aggregation at RSUs every 5 minutes with secure aggregation and clipping (L2 norm < 1.0); poisoned clients (up to 10%)
attempt model-rescaling attacks. Robust median aggregation reduces their influence; suspicious clients’ DIDs are down-

weighted by policy contracts for subsequent rounds.

Evaluation Procedure

Each scenario runs for 20 minutes simulated time. We collect per-vehicle detections, system latencies, and ledger metrics. An event is
a true positive when the detector flags an attack within 2 seconds of its onset and the policy enforces a mitigation (e.g., distrust a sender,
switch to conservative control) before safety threshold breach. False positives are alerts without an injected attack or beyond defined
benign anomalies. We repeat with 30 random seeds (traffic seeds + channel noise variations) per scenario and compute aggregated

statistics.

Baseline

The PKI-only baseline employs conventional certificates with CRLs, RSU-assisted revocation, and a rules-based IDS: static thresholds
on message plausibility, rate limits, and simple kinematic checks. There is logging but no ledger or smart contracts; OTA assurance is

signature-only without transparency anchoring.

RESULTS

Detection Efficacy

The Al-Blockchain system achieves higher TPR (0.92 vs. 0.81) and lower FPR (0.031 vs. 0.072). Improvements are most pronounced
in Sybil and replay scenarios where the graph-based trust scorer, coupled with ledger-maintained reputation, rapidly isolates clusters of
suspicious senders. False-data injection becomes easier to detect as cross-vehicle consistency checks at RSUs reveal implausible field

correlations. In highway platooning, the system reduces cascade effects by quickly degrading autonomy for untrusted leaders.



https://doi.org/10.63345/sjaibt.v1.i2.103

Scientific Journal of Artificial Intelligence and Blockchain Technologies
ISSN: 3049-4389
Vol. 1, Issue 2, Apr — Jun 2024 || PP. 18-28 https://doi.org/10.63345/sjaibt.v1.i2.103

Latency

Decision latency drops from 145 ms to 108 ms on average. Two factors drive the reduction: (i) on-vehicle inference is faster than rule
cascades under high load; (ii) policy dissemination via RSU caches and subscription to ledger events avoids centralized lookups. Policy
event latency—critical for revocations and quarantines—falls to 185 ms average, attributed to BFT finality at 1-second blocks with pre-

commit event streaming to caches and vehicles applying policies on commit intent guarded by safety checks.

Ledger Throughput and Overheads

The permissioned ledger sustains ~256 tx/s of mixed policy events, attestations, and model-round anchors at 70% CPU on validator
nodes. Network overhead on RSU-vehicle links is modest (a few kb/s) due to event digesting and batching. Storage overhead on vehicles

is capped by retaining only the latest policy state and checkpoints; full history resides with validators and archival nodes.

Robustness to Poisoning

Under 10% malicious clients in FL, robust aggregation and policy-driven down-weighting keep model drift within 1.8% of benign
performance over 60 minutes simulated time. Without these controls (ablation), TPR drops by ~7% and FPR rises by ~3%, highlighting

the benefit of on-chain accountability and robust statistics.

Ablations

e No-Blockchain (AI-Only): Similar raw detection but slower and less consistent policy propagation; revocation races create
windows of vulnerability, increasing FPR by ~0.012. Forensics are weaker as evidence is not tamper-evident.
e No-Al (Ledger-Only): Excellent auditability but poor detection sensitivity to subtle attacks; TPR falls below 0.70,

underscoring the need for adaptive Al

Safety Implications

Reduced decision latency and improved detection increase margins for safe fallback behaviors (speed caps, following distance
expansion, human takeover). In the urban grid, near-miss events during false-data injection decrease by 38% relative to baseline due to

quicker distrust of compromised neighbors.

Resource Footprint

On-vehicle Al modules consume 2—4 W average on an embedded accelerator, with 6-10 ms worst-case inference time. Ledger event

handling adds negligible CPU. RSUs require modest GPU resources for cross-vehicle correlation.

Qualitative Observations
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Operators value unified audit trails: disputes over spurious revocations are resolvable by examining on-chain commitments and signed

evidence. Regulatory stakeholders appreciate transparent provenance of models and OTA artifacts without accessing raw driving data.

CONCLUSION

This manuscript presented a pragmatic co-design of Al and blockchain to secure autonomous vehicles across identity, runtime detection,
OTA assurance, and cross-stakeholder governance. By anchoring identities, update manifests, model versions, and critical security
events to a permissioned BFT ledger, the system establishes durable accountability and tamper-evident provenance. AI modules—
lightweight in-vehicle anomaly detectors and graph-based V2X trust scorers—deliver adaptive, context-aware detection that keeps pace
with evolving threats. A federated-learning loop, coordinated and attested via the ledger, enables continual improvement without
centralizing raw telemetry. The two layers reinforce each other: blockchain provides cryptographic trust, policy automation, and

forensics; Al supplies situational awareness and early warning.

In simulation across urban, suburban, and highway scenarios with multiple attack types, the AI-Blockchain architecture outperformed a
PKI-only baseline: TPR increased by 11 percentage points, FPR was more than halved, and end-to-end decision latency improved by
~25%. Ledger-mediated policy dissemination achieved sub-200 ms average propagation to vehicles, enabling timely mitigations such
as sender distrust, conservative control modes, and rapid quarantine of suspicious peers. Robust FL with on-chain accountability resisted
poisoned updates, maintaining detector quality under adversarial clients. These measurable benefits came with manageable compute

and bandwidth overheads suitable for embedded platforms and RSUs.

That said, several limitations warrant attention. First, while permissioned BFT finality and RSU caching met our latency targets for
policy events, deterministic guarantees under partition or disaster conditions remain to be validated in wide-area pilots. Second, privacy
controls—secure aggregation, differential privacy, and access-controlled off-chain payloads—must be tuned to regional data-protection
regimes and could yield utility trade-offs. Third, our attack catalog, while diverse, cannot capture the full spectrum of adversarial ML
tactics or stealthy supply-chain compromises; hardware trojans, advanced adversarial examples, and coordinated multi-vector campaigns
require deeper study. Finally, certification-grade assurance will demand formal verification of critical contracts and safety-case

integration with standards (e.g., ISO 21434, ISO 26262) and test protocols aligned with regulatory bodies.

Future work will focus on real-world pilots integrating cellular V2X, heterogeneous OEM stacks, and municipal infrastructure at city
scale; adaptive committee selection and geo-sharding for the ledger; and runtime enforcement that blends cryptographic proofs (e.g.,
zero-knowledge attestations of model provenance) with semantics-aware policies. We will also explore human-in-the-loop safety
controllers that can exploit on-chain transparency to explain interventions to operators and regulators. Overall, the evidence indicates
that combining AI’s adaptability with blockchain’s verifiability offers a compelling path toward trustworthy, resilient autonomous

mobility.
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