Autonomous Drone Navigation Using Reinforcement Learning Algorithms
DOI:
https://doi.org/10.63345/sjaibt.v2.i3.303Abstract
The rapid evolution of unmanned aerial vehicles (UAVs), commonly referred to as drones, has transformed several industries, including defense, agriculture, disaster management, logistics, and surveillance. One of the most critical challenges in drone operations is autonomous navigation in dynamic and uncertain environments. Traditional rule-based or model-driven navigation systems are limited in adaptability and scalability, particularly in environments characterized by obstacles, unpredictable wind currents, or GPS-denied zones. In recent years, reinforcement learning (RL) has emerged as a powerful paradigm for developing autonomous navigation systems capable of learning optimal policies through interaction with their environment.
Downloads
References
• https://www.mdpi.com/applsci/applsci-13-11275/article_deploy/html/images/applsci-13-11275-g001.png
• https://ars.els-cdn.com/content/image/1-s2.0-S2667241323000113-gr7.jpg
• Abbeel, P., & Ng, A. Y. (2005). Exploration and apprenticeship learning in reinforcement learning. Proceedings of the 22nd International Conference on Machine Learning, 1–8. https://doi.org/10.1145/1102351.1102358
• Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38. https://doi.org/10.1109/MSP.2017.2743240
• Bhatia, S., & Sinha, A. (2021). Reinforcement learning-based path planning for UAVs in dynamic environments. Journal of Intelligent & Robotic Systems, 101(3), 45. https://doi.org/10.1007/s10846-021-01398-6
• Bormann, R., Jordan, F., Li, W., & Frese, U. (2018). Room segmentation: Survey, implementation, and analysis. Robotics and Autonomous Systems, 97, 102–125. https://doi.org/10.1016/j.robot.2017.08.008
• Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI Gym. arXiv preprint arXiv:1606.01540.
• Busoniu, L., Babuska, R., & De Schutter, B. (2010). Reinforcement learning and dynamic programming using function approximators. CRC Press.
• Caccia, M., Garcia, F., & Gorges, D. (2019). Vision-based UAV navigation using deep reinforcement learning. IFAC-PapersOnLine, 52(12), 234–239. https://doi.org/10.1016/j.ifacol.2019.08.170
• Dulac-Arnold, G., Mankowitz, D. J., & Hester, T. (2021). Challenges of real-world reinforcement learning: Definitions, benchmarks and analysis. Machine Learning, 110(9), 2419–2468. https://doi.org/10.1007/s10994-021-05961-4
• Fan, L., & Li, J. (2020). Reinforcement learning-based adaptive navigation strategy for UAVs. Aerospace Science and Technology, 106, 106180. https://doi.org/10.1016/j.ast.2020.106180
• Gao, Y., Liu, Y., & Wang, Z. (2020). Autonomous UAV obstacle avoidance via deep reinforcement learning. Applied Sciences, 10(17), 5949. https://doi.org/10.3390/app10175949
• Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R., & Levine, S. (2017). Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS), 30.
• Hwangbo, J., Sa, I., Siegwart, R., & Hutter, M. (2017). Control of a quadrotor with reinforcement learning. IEEE Robotics and Automation Letters, 2(4), 2096–2103. https://doi.org/10.1109/LRA.2017.2715661
• Koch, W., Mancuso, R., West, R., & Bestavros, A. (2019). Reinforcement learning for UAV attitude control. ACM Transactions on Cyber-Physical Systems, 3(2), 1–21. https://doi.org/10.1145/3301281
• Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2016). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
• Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533. https://doi.org/10.1038/nature14236
• Polydoros, A. S., & Nalpantidis, L. (2017). Survey of model-based reinforcement learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86, 153–173. https://doi.org/10.1007/s10846-016-0468-y
• Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
• Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
• Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. Proceedings of the 10th International Conference on Machine Learning, 330–337.
• Zeng, C., Luo, J., & Fang, Y. (2021). Deep reinforcement learning for safe and energy-efficient UAV navigation. IEEE Transactions on Vehicular Technology, 70(6), 6076–6088. https://doi.org/10.1109/TVT.2021.3078564
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific Journal of Artificial Intelligence and Blockchain Technologies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The license allows re-users to share and adapt the work, as long as credit is given to the author and don't use it for commercial purposes.