AI-Driven Predictive Analytics in Precision Agriculture

Authors

  • A Renuka Dhaid Gaon, Block Pokhra Author

DOI:

https://doi.org/10.63345/sjaibt.v2.i3.102

Keywords:

Predictive Analytics, Machine Learning, Crop Yield Prediction, Irrigation Optimization, Smart Farming

Abstract

The rapid advancement of artificial intelligence (AI) and big data analytics has revolutionized agricultural practices by enabling precise, data-driven decision-making. Precision agriculture, a paradigm that leverages technology to optimize farming processes, increasingly relies on AI-driven predictive analytics to address challenges such as food security, resource efficiency, and climate variability. This manuscript critically examines the role of AI-driven predictive analytics in enhancing precision agriculture, with a particular focus on yield forecasting, soil health monitoring, pest and disease prediction, irrigation optimization, and supply chain management. It explores a comprehensive body of literature that illustrates how machine learning (ML), deep learning (DL), and predictive models have been employed to reduce uncertainty in farming outcomes while maximizing productivity and sustainability.

Downloads

Download data is not yet available.

References

https://www.researchgate.net/publication/234083472/figure/fig4/AS:669551071080449@1536644823038/Flow-diagram-of-the-benefits-of-implementation-of-Precision-Agriculture-for-management.png

https://media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs11042-020-09740-6/MediaObjects/11042_2020_9740_Fig3_HTML.png

• Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2019). State-of-the-art in artificial neural network applications: A survey. Heliyon, 5(11), e01802. https://doi.org/10.1016/j.heliyon.2019.e01802

• Ahmad, L., & Maheshwari, P. (2021). Artificial intelligence in precision agriculture: Applications and challenges. Materials Today: Proceedings, 47(1), 1826–1831. https://doi.org/10.1016/j.matpr.2021.05.119

• Azzari, G., & Lobell, D. B. (2017). Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 202, 64–74. https://doi.org/10.1016/j.rse.2017.05.025

• Balafoutis, A. T., Beck, B., Fountas, S., Vangeyte, J., van der Wal, T., Soto, I., Gómez-Barbero, M., Barnes, A., & Eory, V. (2017). Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability, 9(8), 1339. https://doi.org/10.3390/su9081339

• Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012

• Food and Agriculture Organization (FAO). (2021). The state of food and agriculture 2021: Making agri-food systems more resilient to shocks and stresses. Rome: FAO. https://doi.org/10.4060/cb4476en

• Geethalakshmi, V., Lakshmanan, A., & Jagannathan, R. (2018). Role of crop simulation models in agriculture. Current Science, 114(9), 1875–1883.

• Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

• Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in Plant Science, 10, 621. https://doi.org/10.3389/fpls.2019.00621

• Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674

• Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164, 324–333. https://doi.org/10.1016/j.rse.2015.04.021

• Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, 1419. https://doi.org/10.3389/fpls.2016.01419

• Njoroge, J. B., Ninomiya, S., Kondo, N., & Toita, H. (2002). Automated fruit grading system using image processing. Transactions of the ASAE, 45(3), 719–725. https://doi.org/10.13031/2013.8850

• Pantazi, X. E., Moshou, D., & Bravo, C. (2016). Active learning system for weed species recognition based on hyperspectral sensing. Biosystems Engineering, 146, 193–202. https://doi.org/10.1016/j.biosystemseng.2016.01.007

• Ramesh, K., Manjunath, K. R., & Tripathy, R. (2020). Data-driven crop modelling in precision agriculture. International Journal of Remote Sensing, 41(2), 345–367. https://doi.org/10.1080/01431161.2019.1651614

• Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

• Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. https://doi.org/10.3390/s19173796

• Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007

• van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709. https://doi.org/10.1016/j.compag.2020.105709

• Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

Published

01-07-2025

Issue

Section

Review Article

How to Cite

AI-Driven Predictive Analytics in Precision Agriculture. (2025). Scientific Journal of Artificial Intelligence and Blockchain Technologies, 2(3), July(9-17). https://doi.org/10.63345/sjaibt.v2.i3.102

Similar Articles

1-10 of 64

You may also start an advanced similarity search for this article.