Smart Traffic Management Systems Using AI-Based Video Analytics

Authors

  • Sneha Iyer Independent Researcher Banjara Hills, Hyderabad, India (IN) – 500034 Author

DOI:

https://doi.org/10.63345/

Keywords:

Smart traffic management, video analytics, deep learning, computer vision, congestion control, intelligent transportation systems, urban mobility

Abstract

The unprecedented surge in urbanization has intensified global challenges of traffic congestion, air pollution, and road safety, underscoring the urgent need for next-generation transportation solutions. Traditional traffic management approaches, such as fixed-time signals and manual monitoring, have proven inadequate in adapting to the dynamic and complex nature of modern urban mobility. Artificial intelligence (AI) and video analytics offer a transformative pathway by leveraging real-time surveillance data, computer vision, and deep learning models to optimize traffic flows, enhance safety, and reduce environmental footprints. 

Downloads

Download data is not yet available.

References

https://www.researchgate.net/publication/334410680/figure/fig1/AS:779813711265792@1562933485676/Smart-traffic-management-platform-architecture.jpg

https://www.researchgate.net/publication/293227987/figure/fig1/AS:876904676614144@1586081775647/Smart-traffic-optimization-system-architecture.ppm

• Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). SUMO—Simulation of Urban MObility: An overview. Proceedings of SIMUL 2011: The Third International Conference on Advances in System Simulation, 63–68. ThinkMind. DLR Electronic Library+1

• Krajzewicz, D., Heinrichs, D., Heinrichs, J., & Riehl, C. (2014). Second generation of pollutant emission models for SUMO. In SUMO 2014—Simulating Mobility with Open Data. DLR. DLR Electronic Library

• Tang, Z., et al. (2019). CityFlow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8797–8806. CVF Open Access

• Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M.-C., Qi, H., Lim, J., Yang, M.-H., & Lyu, S. (2019). UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking. Computer Vision and Image Understanding, 193, 102907. https://doi.org/10.1016/j.cviu.2019.102907 University at Albany

• Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems (NeurIPS 28). NeurIPS Proceedings

• Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934. arXiv

• Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10781–10790. CVF Open Access

• Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking with a deep association metric. 2017 IEEE International Conference on Image Processing (ICIP), 3645–3649. https://doi.org/10.1109/ICIP.2017.8296962 ACM Digital Library

• Lubna, Mufti, N., & Shah, S. A. A. (2021). Automatic number plate recognition: A detailed survey of relevant algorithms. Sensors, 21(9), 3028. https://doi.org/10.3390/s21093028 PMC

• Laroca, R., Severo, E., Zanlorensi, L. A., Oliveira, L. S., Gonçalves, G. R., Schwartz, W. R., & Menotti, D. (2018). A robust real-time automatic license plate recognition based on the YOLO detector. IJCNN 2018 (UFPR-ALPR dataset). https://doi.org/10.1109/IJCNN.2018.8489629 arXivweb.inf.ufpr.br

• Zhang, S., Wu, G., Costeira, J. P., & Moura, J. M. F. (2017). Understanding traffic density from large-scale web camera data. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5890–5898. CVF Open Access

• Hu, Z., Qu, X., Li, T., Wei, H., & Ren, Z. (2023). Turning traffic surveillance cameras into intelligent sensors for traffic density estimation. Complex & Intelligent Systems, 9, 4977–4992. https://doi.org/10.1007/s40747-023-01117-0 SpringerLink

• Lin, H., Jiao, R., Wang, Y., & Yin, J. (2022). A deep learning framework for video-based vehicle counting with weak supervision. Frontiers in Physics, 10, 829734. https://doi.org/10.3389/fphy.2022.829734 Frontiers

• Kutlimuratov, A., Kim, J., Kim, T., Alqahtani, M. S., & Choi, A. (2023). Applying enhanced real-time monitoring and counting method for effective traffic management in Tashkent. Sensors, 23(11), 5110. https://doi.org/10.3390/s23115110 PMC

• Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., & Li, Z. (2020). Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. Proceedings of AAAI 2020, 3414–3421. https://doi.org/10.1609/aaai.v34i04.5744 AAAI Open Access jhc.sjtu.edu.cn

• Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., & Li, Z. (2019). PressLight: Learning Max Pressure control to coordinate traffic signals in arterial network. Proceedings of the 25th ACM SIGKDD (KDD), 1290–1298. https://doi.org/10.1145/3292500.3330949 ACM Digital Library+1

• Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., Zhang, W., Zhu, Y., Xu, K., & Li, Z. (2019). CoLight: Learning network-level cooperation for traffic signal control. Proceedings of the 28th ACM CIKM, 1913–1922. https://doi.org/10.1145/3357384.3357902 ACM Digital Library+1

• Rasheed, F., Yau, K.-L. A., Noor, R. M., Wu, C., & Low, Y. C. (2020). Deep reinforcement learning for traffic signal control: A review. IEEE Access, 8, 208016–208044. https://doi.org/10.1109/ACCESS.2020.3034141 Documents Delivered

• Cangialosi, F., Agarwal, N., Arun, V., Jiang, J., Narayana, S., Sarwate, A., & Netravali, R. (2022). Privid: Practical, privacy-preserving video analytics queries. USENIX NSDI 2022, 479–496. USENIX

• Myagmar-Ochir, Y., Lee, J., & Kim, T. (2023). A survey of video surveillance systems in smart city: Functions and challenges. Electronics, 12(17), 3567. https://doi.org/10.3390/electronics12173567 MDPI

Downloads

Published

02-09-2025

Issue

Section

Review Article

How to Cite

Smart Traffic Management Systems Using AI-Based Video Analytics. (2025). Scientific Journal of Artificial Intelligence and Blockchain Technologies, 2(3), Sept(54-62). https://doi.org/10.63345/

Similar Articles

1-10 of 43

You may also start an advanced similarity search for this article.