Bias and Discrimination in Decentralized AI Decision Systems

Authors

  • Dr. Jonas Becker Department of Robotics Munich Institute of Applied Sciences Author

DOI:

https://doi.org/10.63345/

Keywords:

Decentralized AI, Discrimination, Fairness, Federated Learning, DAO Governance, Blockchain, Non-IID Data

Abstract

Decentralized AI decision systems—spanning federated learning, peer-to-peer optimization, DAO-governed models, and blockchain-orchestrated inference—promise resilience, privacy, and transparency by distributing data, compute, and control. Yet decentralization does not automatically guarantee fairness. This paper examines how bias and discrimination emerge and persist when decision-making is pushed to the edge or collectively governed, and how those dynamics differ from centralized pipelines. We synthesize the literature on algorithmic bias, fairness metrics, federated learning with non-IID data, and token-based governance to articulate a socio-technical framework for risk.

Downloads

Download data is not yet available.

References

• Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104(3), 671–732.

• Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., … Van Overveldt, T. (2019). Towards federated learning at scale: System design. In Proceedings of MLSys 2019.

• Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 77–91).

• Buterin, V., Hitzig, Z., & Weyl, E. G. (2019). Liberal radicalism: A flexible design for philanthropic matching funds. SSRN Electronic Journal.

• Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183–186.

• Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big Data, 5(2), 153–163.

• Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. In Proceedings of ITCS (pp. 214–226).

• Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé III, H., & Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86–92.

• Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. In Advances in Neural Information Processing Systems.

• Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., … Sun, Z. (2021). Advances and open problems in federated learning. Foundations and Trends in Machine Learning, 14(1–2), 1–210.

• Kleinberg, J., Mullainathan, S., & Raghavan, M. (2017). Inherent trade-offs in the fair determination of risk scores. In Proceedings of ITCS.

• Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks (FedProx). In Proceedings of MLSys 2020.

• McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Proceedings of AISTATS (pp. 1273–1282).

• Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), Article 115.

• Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., … Gebru, T. (2019). Model cards for model reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency (pp. 220–229).

• Mohri, M., Sivek, G., & Suresh, A. T. (2019). Agnostic federated learning. In Proceedings of ICML (pp. 4615–4625).

• Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies. Princeton University Press.

• Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. NYU Press.

• O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.

• Wright, A., & De Filippi, P. (2015). Decentralized blockchain technology and the rise of lex cryptographia. SSRN Electronic Journal.

Downloads

Published

02-01-2025

Issue

Section

Review Article

How to Cite

Bias and Discrimination in Decentralized AI Decision Systems. (2025). Scientific Journal of Artificial Intelligence and Blockchain Technologies, 2(1), Jan(70-78). https://doi.org/10.63345/

Similar Articles

1-10 of 40

You may also start an advanced similarity search for this article.