Blockchain Timestamping for AI Model Lifecycle Tracking
DOI:
https://doi.org/10.63345/Keywords:
Blockchain Timestamping, AI Lifecycle, Provenance, Merkle Trees, Content Addressing, W3C PROV, Verifiable Credentials, MLflow, DVCAbstract
The accelerating complexity and societal impact of artificial intelligence (AI) systems have sharpened calls for reproducibility, auditability, and trustworthy governance of the entire model lifecycle—from data collection and labeling to training, evaluation, deployment, monitoring, and retirement. This paper proposes blockchain‐anchored timestamping as a practical, standards-aligned mechanism to create tamper-evident, independently verifiable evidence of when specific lifecycle events occurred and what artifacts (data snapshots, model checkpoints, code commits, configuration files, and deployment manifests) were involved. Building on the cryptographic foundations of secure hashing, Merkle aggregation, and append-only ledgers, we integrate content-addressed storage and well-known provenance schemas to produce minimal-disclosure receipts that reduce storage cost and leakage risks while preserving verifiability.
Downloads
References
• Haber, S., & Stornetta, W. S. (1991). How to time-stamp a digital document. Journal of Cryptology, 3(1), 99–111. https://doi.org/10.1007/BF00196791
• Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
• Adams, C., Cain, P., Pinkas, D., & Zuccherato, R. (2001). Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP) (RFC 3161). IETF. https://www.rfc-editor.org/info/rfc3161
• National Institute of Standards and Technology. (2015). Secure Hash Standard (SHS) (FIPS PUB 180-4). https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
• Laurie, B., Langley, A., & Kasper, E. (2013). Certificate Transparency (RFC 6962). IETF. https://www.rfc-editor.org/rfc/rfc6962
• OpenTimestamps. (n.d.). OpenTimestamps: Provable timestamps and verification. https://opentimestamps.org/
• National Institute of Standards and Technology. (2023). AI Risk Management Framework (AI RMF 1.0) (NIST AI 100-1). https://doi.org/10.6028/NIST.AI.100-1
• International Organization for Standardization. (2023). ISO/IEC 42001:2023 — Artificial intelligence management system. https://www.iso.org/standard/42001.html
• European Parliament & Council. (2024). Regulation (EU) 2024/1689 (Artificial Intelligence Act). Official Journal of the European Union, 12 July 2024. https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
• W3C. (2013). PROV-DM: The PROV Data Model (W3C Recommendation). https://www.w3.org/TR/prov-dm/
• W3C. (2025). Verifiable Credentials Data Model v2.0 (W3C Recommendation). https://www.w3.org/TR/vc-data-model-2.0/
• Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2018). Model Cards for Model Reporting. arXiv:1810.03993. https://arxiv.org/abs/1810.03993
• Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé III, H., & Crawford, K. (2018). Datasheets for Datasets. arXiv:1803.09010. https://arxiv.org/abs/1803.09010
• Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., & Dennison, D. (2015). Hidden technical debt in machine learning systems. Advances in Neural Information Processing Systems, 28. https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems
• Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., … Xin, R. (2018). Accelerating the machine learning lifecycle with MLflow. IEEE Data Engineering Bulletin, 41(4), 39–45. https://people.eecs.berkeley.edu/~matei/papers/2018/ieee_mlflow.pdf
• Benet, J. (2014). IPFS — Content addressed, versioned, P2P file system. arXiv:1407.3561. https://arxiv.org/pdf/1407.3561
• IPFS Docs. (n.d.). Merkle Directed Acyclic Graphs (DAG) and content addressing. https://docs.ipfs.tech/concepts/merkle-dag/
• DVC. (n.d.). Versioning data and models. https://dvc.org/doc/use-cases/versioning-data-and-models
• SLSA Framework. (n.d.). Supply-chain Levels for Software Artifacts (SLSA). https://slsa.dev/
• in-toto. (n.d.). in-toto: Securing the integrity of software supply chains. https://in-toto.io/
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scientific Journal of Artificial Intelligence and Blockchain Technologies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The license allows re-users to share and adapt the work, as long as credit is given to the author and don't use it for commercial purposes.